
     1 Although it seems that Gödel himself endorsed some form of this argument, his views on the
subject are complex and somewhat conflicting. For details see Wang (1993).

     2 I call A consistent just in case it will never lead to belief on the basis of proof in a pair of
inconsistent mathematical statements (e.g. 0=1 and ~(0=1)). The sentence G(A) can be thought
of as the mathematical proposition which suitably encodes: ‘Turing machine T will not halt when
given this statement as input’.

Yesterday’s Algorithm: Penrose and the Gödel Argument

§1. The Gödel Argument.

Roger Penrose is justly famous for his work in physics and mathematics but he is
notorious for his endorsement of the Gödel argument (see his 1989, 1994, 1997). This argument,
first advanced by J. R. Lucas (in 1961), attempts to show that Gödel’s (first) incompleteness
theorem can be seen to reveal that the human mind transcends all algorithmic models of it1.
Penrose's version of the argument has been seen to fall victim to the original objections raised
against Lucas (see Boolos (1990) and for a particularly intemperate review, Putnam (1994)). Yet
I believe that more can and should be said about the argument. Only a brief review is necessary
here although I wish to present the argument in a somewhat peculiar form.

Let us suppose that the human cognitive abilities that underlie our propensities to acquire
mathematical beliefs on the basis of what we call proofs can be given a classical cognitive
psychological or computational explanation (henceforth I will often use ‘belief’ as short for
‘belief on the basis of proof’). These propensities are of at least two types: the ability to
appreciate chains of logical reasoning but also the ability to recognise ‘elementary proofs’ or, it
would perhaps be better to say, elementary truths, such as if a = b and b = c then a = c, without
any need or, often, any possibility of proof in the first sense. On this supposition, these
propensities are the realization of a certain definite algorithm or program somehow implemented
by the neural hardware of the brain. Following Penrose let us call this algorithm A. A is a
specifiable algorithm which manifestly ‘contains’ elementary arithmetic, since we obviously can
appreciate the elementary truths of arithmetic as well as proofs of arithmetical theorems
including Gödel’s incompleteness arguments themselves. Since A is algorithmic, it could be
implemented by a Turing machine, T, which would then be a pure computational model of our
mathematical propensities. There are various ways we can imagine such an implementation. A
very simple one is to think of T as taking the numbers of formulas representing arithmetical
propositions, under some suitable coding scheme, as inputs and returning 1 (standing for
‘humanly believable on the basis of proof’) or 0 (for ‘not humanly believable’). Then, of course,
we know there must be some mathematical statement, G(A), for which T will not produce an
output in a finite time, so long as A (equally, T) is consistent2. If we know the structure of A (or
T) then G(A) can be explicitly constructed and, by its construction, it must be true (given that A
is consistent). That is, seeing as we do grasp the arguments that Gödel and Turing used, we can
understand that G(A) must exist and must be true (again, given that A is consistent). However
since, by hypothesis, A is what underlies our entire set of propensities for accepting mathematical
truths it will be impossible for us to believe (on the basis of proof) that G(A) is true (because for



us to believe that G(A) is true just means that T yields output 1 in a finite time when G(A)’s
number is T’s input). But this is contrary to what we have just established. The argument
concludes from this contradiction that no algorithm can completely account for our ability to
acquire mathematical beliefs on the basis of proofs.

This argument is obviously subject to criticisms from a variety of standpoints. These can
be clearly brought out by an examination of the key propositions in the argument. First, we must
suppose that we can know A, that we can understand this algorithm:

(P1) We can thoroughly understand the entire structure of A.
We must also know that A is in fact the algorithm that underlies our mathematical ‘belief
generator’ else our knowledge of A is of no more than academic interest. The fact that we can
prove that G(A) is true would, in the absence of this knowledge, just show that A was not what
underlies our mathematical beliefs in which case the argument would stall. So:

(P2) We know that A underlies our propensities to acquire mathematical beliefs on the
basis of proofs.

Supposing that P1 and P2 are true, we must further believe that A is consistent. In fact for the
argument to be entirely successful we must know that A is consistent, for if A is not consistent
then Gödel’s result simply does not apply to it:

(P3) We know that A is consistent.
P2 and P3 each mask a slight ambiguity for they could fail to hold in two ways: we might not
know that A underlies our mathematical belief generator (or that A is consistent) – even when it
does (is) – because of some internal cognitive failing (perhaps, for example, because A was too
complex for us to understand and/or assess) or we might not know that A underlies our
mathematical belief generator (is consistent) – whether or not we believed it – simply because A
does not (is not).

However, given each of P1 through P3 the argument is surely successful insofar as they
cannot be all true. If we assume P1 and P2 then we cannot know that A is consistent, for if we
did know this then G(A) would be a statement we would have to admit was true but which we
could not admit was true (by P2). If P2 and P3 are assumed then P1 must be false, for if we did
understand A we could then construct G(A) and by this construction procedure, which we already
know that we understand, arrive at a statement we must but cannot endorse. P1 and P3 entail that
we could not know that A underlies our mathematical belief generator, since otherwise we could
generate G(A) via P1 and know that it was true via P3 which would contradict P2. Penrose’s own
route is this last one. Furthermore, he interprets the falsity of P2 in the stronger of the two ways
outlined above; P2 is false simply because A does not underlie our mathematical belief generator.

§2. A Miraculous Selection of Errors.
Given this inconsistent triad, it is easy to list the basic ways that Penrose could be wrong:

P1 might be false, P3 might be false, or P2's falsity might be due not to A failing to underlie our
mathematical belief generator but rather to some sort of cognitive deficiency on our part. A very
common response is to deny P3 (and Penrose goes to great lengths in his attempt to show that our
mathematical belief generator is consistent and knowably so). George Boolos’s remarks are
particularly clear here (although these remarks are directed to Penrose (1989) I doubt that
Boolos’s opinion has changed):

Penrose has said nothing that shows that we can recognize the truth of the Gödel sentence
for ZF or for any other reasonable approximation to the whole of mathematics that we



     3 Obviously, relative consistency proofs (such as Gentzen’s proof that arithmetic is consistent)
will not help us here unless we already have faith in the consistency of the higher systems in
which these proofs are couched.

ourselves use. What we can see the truth of is this conditional proposition: The Gödel
sentence for ZF is ZF-unprovable (and therefore true) if ZF is consistent. We cannot see
that the Gödel sentence is true precisely because we cannot see that ZF is consistent. We
may hope or believe that it is, but we do not know it, that therefore cannot see it ... Can
we really ‘see’ that ‘0=1’ is not sitting at the bottom of some lengthy, intricate, and
ingenious proof perhaps involving concepts and arguments of a kind of which today we
are completely unaware? (1990, pp. 655, 656, original emphasis)

However, it seems to me that such a response to Penrose is extremely puzzling. Our judgement
as to the consistency of some system is not dependent upon that system’s being able to prove its
own consistency (i.e. generate a formula that states, e.g. ‘0=1’ is not provable). For if that was
the sole basis, how could we trust it? If the system was inconsistent, it could generate this
formula as well (see Smullyan (1992, p. 109)). Furthermore, Boolos allows that we do know that
certain systems, such as Peano Arithmetic, are consistent even though they cannot prove their
own consistency. Presumably, we know this because we can see that a certain model satisfies the
axioms of the system at issue3, hence that they are true in that model and so must be consistent.
Boolos speculates that it is possible that someday someone will prove that 0=1 but if this is a real
possibility, as opposed to a mere statement of the possible fortunes of ZF when subjected to our
mathematical belief generator, then we could use it to undercut our belief in the consistency of
any mathematical system to which the application of either consistency proofs or a model require
us to use our own mathematical belief generator in their assessment (which is to say, all such
systems). I think this would be to go too far, certainly too far for Professor Boolos who has said
about a system of elementary Peano arithmetic, here labelled Z:

Corollary 2 shows that -Prov(0=1), which ‘expresses the consistency of Z’, is not
provable in Z. (‘If Z is consistent’, one might be tempted to add. But Z is consistent)
Boolos and Jeffrey (1980, p. 188)

So what prevents us from similarly knowing that A is consistent? Just Gödel’s theorem? Now
this is a kind of miracle: the consistency of an algorithm designed by evolution and culture,
implemented in our brains, ready for study by all the cognitive sciences must be unknowable for
reasons of pure logic! The argument is akin to some used in the physical sciences which depend
upon the anthropic principle and it suffers the same problem: the argument provides no
explanation of what it is about this particular algorithm that makes it such that it cannot be
known to be consistent. The algorithm is obviously a complex one, but there is no proof that its
complexity precludes us from understanding it or from being able to apply a model to it which
satisfies its basic postulates. I can see no reason, for example, why A could not be made of a
large number of modules each of which was relatively simple and whose interactions were
one-by-one graspable. There is certainly no need to imagine that our algorithm is a
straightforward emulation of ZF – its ‘postulates’ are likely to be numerous and more directly
‘mathematical’ as well as more obviously true than the axioms of set theory (hence Boolos’s
remark that ‘none of the axioms of set theory forces itself on us the way “x + 0 = x” does’ (1990,
p. 656) is unlikely to be directly relevant to our own algorithm). The alternative view of Boolos
et. al. is disturbingly reminiscent of what they like least about appeals to Gödel’s theorem: that



     4 It is crude at least insofar as we should distinguish formulas from their numerical codes, but
this does not affect the argument and makes everything typographically clearer.

     5 One might rightly complain that the argument seems to trade on ignoring the distinction
between believing a mathematical proposition and believing a mathematical proposition on the
basis of proof. Such an observation is beside the point however. For the argument appears to
show that adding the axiom ~Prov(0=1) to ST makes ST inconsistent. Yet that is exactly our
position: we believe that we are consistent in our mathematical beliefs and cannot seriously
believe that this last belief actually makes us inconsistent! Furthermore, what prevents the
possibility of a mind (perhaps rather more extensive than our own) understanding its own
algorithm sufficiently to see that its associated formal system has a model?

there are significant limits set to the world and its workings simply by this theorem which we can
know about without any empirical investigation.

A similar worry besets the alternative ways of evading Penrose’s conclusion. It might be
urged that we can simply deny that A is consistent. There is, after all, lots of evidence that human
thought processes are somewhat less than a model of logical rigour. I think this objection is
beside the point but it also raises an interesting issue. If the objection provides a general answer
to Penrose’s position then it must assert that no cognitive system capable of grasping elementary
arithmetic and the Gödel argument can be consistent. This would be an astonishing result for
which I can see no plausibility whatsoever, although it would be a delicious irony if the very
thought processes requisite for mathematics – the bastion of logical correctness – were such as to
guarantee that these processes were actually inconsistent. Curiously, there is a sort of proof that
the formal system which, we are supposing, corresponds to our mathematical belief generator
must be inconsistent, so long as we believe that it is consistent (which of course, we do). This is
because the computationalist assumption is, in essence, that our beliefs are the theorems of a
formal system (implemented, as it were, by T, as above). If we believe our mathematical belief
generator is consistent then we must believe that we (via it) cannot prove that, say, 0=1. Let’s
formalize this crudely4 as Bel(~Prov(0=1)), where ‘Prov’ is our provability predicate (see Boolos
and Jeffrey (1980) or Smullyan (1992) for more on this class of predicate). The existence of such
a predicate with regard to our own beliefs about mathematical proof seems uncontroversial, for
the technical demands on provability predicates are minimal. But we are supposing that our
mathematical beliefs correspond to the theorems of some appropriate formal system ST (which
could be implemented by the Turing machine T that we described above). So to say
Bel(~Prov(0=1)) is to say that ~Prov(0=1) is a theorem of ST, or |ST ~Prov(0=1). But according to
Löb’s theorem (the reasoning behind which humans can obviously appreciate), provability
predicates meet the following condition: if |ST Prov(X) e X then |ST X. By elementary logic,
|ST~Prov(0=1) implies that |ST Prov(0=1) e 0=1 and hence |ST 0=1. So ST must be inconsistent
after all (or else, as Penrose contends, our mathematical belief generator cannot be
algorithmically modelled). It is difficult to know exactly what to make of this argument – it is
strangely unclear, for example, which side of the debate it favours. It could be taken as a new
argument against computationalism or, no less remarkably, be taken to show that
computationalism about the mind (or, at least, about belief generation) guarantees that any
believer who takes himself to be consistent must be wrong! I believe, though, that any challenge
this argument might pose will be avoided by the solution to be proposed below.5



On the other hand, if the ‘inconsistent system reply’ is restricted to human thought
processes then it simply doesn’t address the real point of the argument. We would need to see
some sort of reason, grounded in a theory of cognition rather than based on the magic of ‘pure
logic’, why inconsistency has to arise as human cognition becomes more complex before this
reply could regain our interest, and I can see no ground for such an assertion of ‘universal
cognitive incompetence’.

Taking another tack, we could assert that P2 could be false because we cannot know that
A underlies our mathematical belief generator even though in fact it does. But why should this be
so? What prevents us from getting this knowledge? Would a researcher die if he or she got a little
too close to this unattainable knowledge?! Or again, we could doubt that A is even
understandable (this is Putnam’s (1994) route: ‘... there is an obvious lacuna: the possibility of a
program we could write down but not succeed in understanding is overlooked! This is the
mathematical fallacy on which the whole book rests.’) But what grounds could we give for
seriously entertaining this possibility, especially as a principled answer to Penrose’s argument? It
won’t do to say that it must be impossible to know A just because that would violate Gödel’s
theorem (there is no magic in this theorem that can suddenly freeze our minds). We would want
to know how the world enforces the limitation that Gödel’s theorem points to here. In sum, we
should not rest content with a miraculous selection from a set of possible errors that always and
inescapably undermines Penrose’s argument.

§3. Dynamic Cognition.

I would like to suggest that focussing on how the world works (or at least might work)
could provide the proper answer to Penrose without having to succumb to the Gödel mysticism
that simply outlaws certain sorts of knowledge prior to all investigation (it is ironic that
Penrose’s critics are guilty of a failing – Gödel mysticism – which they so enjoy scornfully
attributing to Penrose and Lucas). I think the fundamental problem is that the Penrose argument
neglects the dynamic qualities of cognition. Of course, Penrose acknowledges that the Gödel
sentence for any particular system can be deduced in a ‘broader’ system. This does not matter
since he is engaged in a general reductio ad absurdum form of argument which begins with the
assumption that a certain specifiable algorithm underlies our mathematical belief generator.
Penrose is quite right to complain that it is then illicit to ‘change’ the algorithm in mid-argument
(see Penrose 1994, pp. 80-82).

But real cognition is carried on by a system that is constantly changing and some of these
changes are the result of the very cognitive activities in which it is engaged. Our mathematical
judgements are not and have not been produced by some one, final algorithm but rather our
current judgements are produced by our current algorithm. And it is the acquisition of
mathematical knowledge which is itself one of the forces which alters the very algorithm which
generates it. Certainly, it is evident that as children learn to understand the nature of mathematics
the very procedures of reasoning about mathematics change in that process. In particular, we can
suppose that the acquisition of a knowledge of our mathematical algorithm sufficiently detailed
to enable the generation of its Gödel sentence would alter the algorithm (and, no doubt, many
other factors affect the algorithm as well). To be sure, each such algorithm has its own Gödel
sentence but we cannot know the algorithm which underlies our current mathematical
propensities in sufficient depth to run into the Gödel trap without in that very process changing



the algorithm.
This is not a mathematical fact or a misappreciation of the nature of the reductio form of

argument. In the abstract, Platonic world of pure mathematical objects there is a Gödel sentence
for the algorithm which at any given time underlies our mathematical capacities (if there is such
an algorithm – I am only arguing here that Penrose’s argument fails, not that computationalism
succeeds). But our mathematical knowledge does not spring from that ethereal and altogether
hypothetical world of Plato’s Forms – it springs from the concrete, brain-bound systems that are
in place and acting right now. And given that coming to understand our own algorithm would of
necessity change that algorithm we can only know, as it were, yesterday’s algorithm. We can
know, perhaps, that yesterday we could not have accepted a certain sentence, S, which today we
know to be true. Unfortunately (or not), gathering the knowledge required to come to this
conclusion about S precludes S from being relevant to today’s algorithm.

I have heard it argued that the fact that our algorithm can change shows directly that we
are not Turing machines, for they cannot alter their algorithm. Well, of course we are not Turing
machines (where, for example, is our infinite tape). The claim here is just that our mathematical
belief generator, at any time, can be emulated by a Turing machine in, for example, the way
described above. There may be however an algorithmic description of the proposed mechanism
of change in our mathematical algorithm and this might suggest that the Penrose argument could
be replayed at the level of this ‘meta-algorithm’. But, in the first place, such a meta-algorithm is
outside the scope of our mathematical belief generators. Secondly, and more important, its
existence will not affect the central point of my suggested reply, which is that the acquisition of
knowledge of G(A) must in the process alter A so that G(A) is no longer inaccessible to my
current algorithm. The worry can be expressed as follows. Suppose that I can know that G(A) is
a truth that cannot be believed by someone whose beliefs are generated by algorithm A (so long
as A is consistent). If I can know that my current algorithm is, say, B and that by the
meta-algorithm of algorithm generation B leads to A then I could know that tomorrow I will not
be able to believe G(A) even though it is true. I could write this reasoning down and read it
tomorrow and thus come to believe (on the basis of what could reasonably be regarded as proof)
that G(A) is true, contrary to our supposition that A will underlie my mathematical belief system
tomorrow. But according to my suggestion, it is impossible to come to know one’s current
algorithm (in such detail) without altering that algorithm. So we simply won’t have the proper
input to our meta-algorithm and thus the problem does not arise.

This suggestion accepts the basic structure of Penrose’s argument. If our cognition was
the result of a static, final algorithm then the argument would have merit (it would be attackable
only on the grounds of ‘reverse Gödelian mysticism’ discussed above – technically entertainable
perhaps but metaphysically very unsatisfactory). But there is not the slightest reason to think that
our cognitive algorithms are static and much reason to suppose they are plastic, and that one of
the major determinants of algorithmic change is the acquisition of knowledge by way of these
very algorithms. Our knowledge of ourselves is thus always one step behind our true natures, but
that fact cannot refute computationalism. In fact, it is what a computationalist who allows that
computations must be formed and participate in a dynamic world would expect.

William Seager
University of Toronto at Scarborough
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